Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-916246.v1

ABSTRACT

Pfizer/BioNTec BNT162b2 mRNA vaccine robustly elicits neutralizing antibodies against SARS-CoV-2 in clinical trials and real-world settings. However, booster vaccinations are frequently associated with self-limited adverse events. Here, by applying a high-dimensional immune profiling approach to peripheral blood, we linked early vaccine-induced immune dynamics with adverse events and neutralizing antibody responses. The dynamics of two dendritic cell subsets (DC3s and AS-DCs) were identified as the specific correlates for adverse events; the combination of these cell dynamics stratified the vaccinees with severe reactogenicity, while the stratification did not affect the neutralizing antibody titers. Furthermore, the NKT-like cell dynamics that correlated with adverse events and antibody titers were accounted for distinct magnitudes of both events by sex and age. The identified immune correlates for adverse events and antibody responses may pave the way for a rational vaccine strategy for reducing the reactogenicity of mRNA vaccines without compromising the immunogenicity.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.23.436573

ABSTRACT

T cells play pivotal roles in protective immunity against SARS-CoV-2 infection. Follicular helper T (Tfh) cells mediate the production of antigen-specific antibodies; however, T cell receptor (TCR) clonotypes used by SARS-CoV-2-specific Tfh cells have not been well characterized. Here, we first identified and crystallized public TCR of Tfh clonotypes that are shared and expanded in unhospitalized COVID-19-recovered patients. These clonotypes preferentially recognized SARS-CoV-2 spike (S) protein epitopes which are conserved among emerging SARS-CoV-2 variants. These clonotypes did not react with S proteins derived from common cold human coronaviruses, but cross-reacted with symbiotic bacteria, which might confer the publicity. Among SARS-CoV-2 S epitopes, S864-882, presented by frequent HLA-DR alleles, could activate multiple public Tfh clonotypes in COVID-19-recovered patients. Furthermore, S864-882-loaded HLA tetramer preferentially bound to CD4+ T cells expressing CXCR5. In this study, we identified and crystallized public TCR for SARS-CoV-2 that may contribute to the prevention of COVID-19 aggravation.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL